
On the conditions for definiteness of energy and charge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2353

(http://iopscience.iop.org/0305-4470/16/11/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2353-2361. Printed in Great Britain 

On the conditions for definiteness of energy and charge 

M K6iv: and R K Loide!: 
+ Institute of Physics, Academy of Sciences of the Estonian SSR, 202 400 Tartu, USSR 
$Tallinn Polytechnic Institute, 200 026 Tallinn, USSR 
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Abstract. The algebraic conditions of definiteness of energy and charge for the first-order 
wave equations are analysed and re-examined. The known definiteness conditions are 
applicable when there is no mass-spin degeneracy. A procedure is suggested for their 
use in the degenerate case, and is illustrated by application to an indefinite theory of 
particles of spin $ and 4. 

1. Introduction 

Conditions of definiteness of energy and charge are required when we deal with 
first-order wave equations. By definiteness conditions we mean algebraic conditions 
which enable us to determine the definiteness of a given equation from its p algebr, 
It should be mentioned that we have no universal algebraic definiteness conditions; 
the existing ones are applicable only under certain conditions. 

Recently the definiteness problem was treated by Amar and Dozzio (1972), Cox 
(1974a, b), Fedorov and Pletyukhov (1974) and Loide and Loide (1977). In Amar 
and Dozzio (1972) it was proved that for definiteness it is sufficient that to a given 
spin s there corresponds not more than one particle. As is shown by analysing 
particular equations (Cox 1974a, b, Loide and Loide 1977), in the many-particle case 
the equations are mostly indefinite; the densities of energy or charge of different 
particles have different signs. But there are also definite many-particle equations, as 
for example the equation for spin-2 and spin-0 particles given by Cox (1974b). 

The algebraic definiteness conditions were first derived by Fedorov (1958) assuming 
that the equation describes not more than one particle, and are not applicable in the 
many-particle case, as was also shown in Loide and Loide (1977). Fedorov and 
Pletyukhov (1974) used Fedorov’s definiteness conditions and essentially proved that 
in the case of first-order single-particle equations definiteness is always satisfied. 

The definiteness conditions given by Fedorov (1 958) were applied separately to 
each mass-spin state in (Cox 1974a) assuming that there is no mass-spin degeneracy, 
i.e. to each mass-spin state (m, s)  corresponds only one particle. These conditions 
do not apply when states of the same mass and spin occur. 

In this paper we demonstrate how to use the algebraic definiteness conditions in 
the case of mass-spin degeneracy. Our idea is the following: we reduce the given 
equation to a new one which has no mass-spin degeneracy and which in the limit 
reduces to the former one. The new equation has no mass-spin degeneracy and 
therefore allows us to use the existing definiteness conditions. Thus the algebraic 
definiteness conditions may be regarded as the most universal definiteness conditions. 
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The paper is organised as follows. In § 2 the formalism of spin-projection operators 
is introduced. In §§ 3 and 4 the known algebraic definiteness conditions are analysed 
in general and single mass cases. At the same time some mistakes of Loide and Loide 
(1977) are corrected. In § 5 a method (the E procedure) is suggested for testing 
definiteness in the degenerate case. In § §  6 and 7 we illustrate the usage of definiteness 
conditions on equations which describe spin-$ and spin-; particles. 

2. General formalism 

We deal with the first-order wave equations 

(PWP" - x ) $ ( P )  = 0 
where x > 0 and $ ( p )  transforms according to some finite-dimensional representation 
of the Lorentz group. As is known (Corson 1953, Gel'fand et a1 1963), all non-zero 
eigenvalues *b of P o  are connected with the masses by the relation m = x / b .  

In the following we use the formalism based on the spin projection operators and 
treated by Loide (1972), Loide and Loide (1977) and Biritz (1979). This formalism 
was previously used by Weinberg (1964a, b, 19691, Pursey (1965) and Tung (1966, 
1967). 

We may restrict ourselves to the rest system. Then all the useful information is 
contained in the P o  matrix. It is useful to represent P o  in the form 

(2) 
where pCsi) includes only spin projection operators of spin s, (Loide 1974, Loide and 
Loide 1977). pes) are not in general projection operators. Our matrices pes) are 
essentially Gel'fand-Yaglom spin-blocks inflated to the size of P o  by rows and columns 
of zeros. 

When our equation describes particles with spin s the corresponding p =pes) has 
non-zero eigenvalues *b l  and satisfies the minimal equation (minimal pdynomial) 

(3) 

po = p ( s , ,  + p ( s 2 )  +. . . + p.1 

p " ( p * - - b : ) .  * . ( p 2 - b : )  = 0, 

where a 3 0 ,  When our equation does not describe the particle with spin s, the 
corresponding p =pes) has only eigenvalues equal to zero and p is nilpotent, 

p a  = o ,  (4) 
where a 2 2. 

the form 
The solutions which describe particles with mass m = x/b and spin s are given in 

$:m = P:b$ ( 5 )  
(+ describes particles, - antiparticles), where P i b  is the corresponding projection 
operator. 

p'") 

P:b, =(*Zl)ac1APa((p2-b:) * ( P 2 - b f - 1 ) ( p ~ b , ) ( p 2 - b f + i ) .  . . ( p 2 - b : ) ,  (6) 
where 

In the case of the minimal polynomial (3), PZb is given by the expression (p  

A-'=26f+'(bf - b : ) .  . . (bf - b f - l ) ( b f  - b 7 + 1 ) .  . . (bf -b:).  (7) 
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3. Algebraic definiteness conditions 

In this section we discuss the definiteness conditions needed in the following sections 
and clarify the assumptions when these conditions are applicable. 

The definiteness of energy means the definiteness of the scalar product 

($,$) =*+A* (8) 
for each solution of the wave equation (Gel’fand et a1 1963). A is the hermitising 
matrix of the scalar product. The definiteness of charge demands the definiteness of 

(4, Po$)  = ll’APo$. (9) 
The conditions (8) and (9) are expressible by the help of projection operators P L b  

in the form (Fedorov 1958, Cox 1974a, Loide and Loide 1977) 

($:m, $:m) = cc/’fl:b$, (10) 

($:m, p o $ : m )  = *$+fl:b$. (11) 
As we see, we have to deal with the expression $+AP:b$ and we are interested in 
its sign. 

Assuming that PS, has only one non-zero eigenvector (we do not take into consider- 
ation degeneracy due to spin projection), the following condition is valid (Fedorov 
1958): 

Sgn($’AP:b$) = Sgn Tr(AP&). (12) 
From (12) the investigation of definiteness reduces to the investigation of the sign 

of T r ( M i b ) .  Due to (6), P i b  is expressed as a polynomial of p =:pes', 

j = a  

where ai are some coefficients. Therefore Tr(APib)  is the following: 
2 k + a - l  

Tr(APib)  = ai Tr(Ap’). 
j = a  

As we see the investigation of Tr(AP:b) reduces to the investigation of expressions 
Tr(,4p’). In Cox (1974a), Fedorov and Pletyukhov (1974) it is shown that for integer 
spin 

Tr(hp2”’) = 0, Tr(Aj3*’) # 0, (15) 
and for half-odd-integer spin 

Tr(Ap2’+’) # 0, Tr(Ap2’) = 0. 

Therefore in (14) we must deal with even powers of 0 in the former case and with 
odd powers of j3 in the latter case. 

The relation (12) is fundamental to the algebraic definiteness testing. Equation 
(12) holds only if there is no mass-spin degeneracy, i.e. for a given eigenvalue b there 
exists only one spin-s state. Therefore one more condition is useful in considering 
the definiteness problem. The number of particles in our equation with given mass 
and spin is obtained from the expression (Loide and Loide 1977) 

(17) Tr Pi = N ( 2 s  + 1). 
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Here N is the number of particles. When N = 1 the trace condition (12) is valid and 
we may use it to determine the definiteness. In the case when N > 1, i.e. the equation 
describes several particles with the same mass and spin, the trace condition (12) may 
not be valid and may lead to incorrect results (Loide and Loide 1977). 

4. Single mass equations 

Let us write down the definiteness conditions for the single mass equations having 
more than one spin. Now P o  has only two non-zero eigenvalues +b and -b, and 
without loss of generality we may set b = 1. The minimal polynomial (3) takes the form 

(18) p" ( P 2  - 1) = 0 

and Pi1 is 

p:, = (*ly+' + p y p  * 1). 

The expression (14) takes the form 

Using relations (15) and (16) we get: 
(a) integer spin: 

(b) half-odd-integer spin: 

Tr(lZP:l ) = * y s  

where 27, =Tr(,ZP"+') or 2 y s  =Tr(.4P") is the non-zero trace. 

conditions: 
Now the trace condition (12) gives from (21) and (22) the following definiteness 

(a)  integer spin: 

sign of energy 

sign of charge 

sgn(@:, $: = sgn ys, 

sgn(G,  P O @ : )  = *sgn y s ;  

(b) half-odd-integer spin: 

sign of energy 

sign of charge 

sgn(@L, 4;)  = *sgn y s ,  

sgn(@:, P O @ : )  = sgn y5. 

(23) 

(24) 

As we see from (23) and (24), the definiteness is satisfied if yy f 0 and if the 
different y s  have the same sign. From (23) and (24) we also find that in the single- 
particle case the energy is definite for bosons and the charge is definite for fermions 
(Fedorov and Pletyukhov 1974). 

The definiteness conditions given in Fedorov (1958) were derived for P o  assuming 
that the relation (12) is satisfied, i.e. assuming that there exists only one mass-spin 
state. In that case we may operate with P o  instead of with p = p' " .  The definiteness 
conditions are written in the form (Fedorov 1958): 

(a) definiteness of energy: 
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(b) definiteness of charge: 

(26) O a  2 ~-l)"{[Tr(A(~o)a")]* -[Tr(A(p ) 13 1 > 0. 

Now a is the degree in the minimal polynomial of Po.  In the single-particle case the 
conditions (25) and (26) are equivalent to (23) and (24) because one of the traces in 
brackets is always equal to zero. 

In 5 5 we demonstrate how to use the trace conditions in the degenerate case. 
The idea is the following: we replace the given equation by a new one which has no 
mass-spin degeneracy and can therefore be tested for definiteness using (12). 

5. Degenerate case 

Let us suppose that the wave equation describes several particles with given mass and 
spin. For the sake of simplicity we also suppose that in the case of a given spin s the 
corresponding particles have the same mass m. Then p E@'') satisfies the minimal 
equation (we also take b = 1) 

p " ( p 2 - l ) = O .  (27) 

If there are k particles with the same mass and spin we consider a new equation 
which describes particles with the same spin but with k different masses: m, m / ( l  + 
E ~ ) ,  , , . , m / ( l + ~ ~ _ ~ ) .  Then the eigenvalues of p i S ' = p P E  are il, * ( l + ~ ~ ) ,  . . . , *(1+ 
~ k - ~ )  and PE satisfies instead of (27) the minimal equation 

Also we demand that in the limit E ,  + O  we get p which satisfies (27). Due to 
different masses we may use the trace condition (12) and determine the definiteness 
of different solutions. After this is done we take the limit E ,  + O .  Since in the final 
stage we are interested in the limit E ,  + 0 we may suppose at the beginning that E ,  are 
infinitesimal parameters. 

This E procedure is performed in the following way. A general first-order wave 
equation always contains free parameters which allow us to vary the eigenvalues of 
the P o  matrix and also the eigenvalues of pes' (Loide 1972, Loide and Loide 1977). 
If we have, for example, the minimal equation (27) we may infinitesimally vary the 
parameters and in this way infinitesimally alter the eigenvalues of pis). In the limit, 
lim,+o PE = p, where p satisfies (27). The given procedure is in principle possible in 
the case of an arbitrary first-order wave equation. As we see in § 7 this E procedure 
is not unique, but in definiteness testing this is not necessary. 

So, introducing the E procedure, we demanded that there exists the matrix 
which removes the degeneracy and in the limit, lim,,o P E  = p, where p satisfies (27). 
We think the E procedure is useful in the theory of relativistic wave equations in the 
degenerate case. It also serves the possibility of separating the degenerate states. 

In  the following sections we deal with the single mass equations which describe 
spin-? and spin-; particles and illustrate how to determine the definiteness and perform 
the E procedure. The representation we have used serves as the simplest non-trivial 
example with degenerate states. 
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6. Spin-; and spin-; equations 

We deal with equations with the representation (1 ,  $)O(O, ;)e($, 0 ) 0 ( $ ,  1)  which 
describe particles with spins 1 and $. Now pa has the form Po = p‘3/2’ + p( ’ / ” .  Denoting 
the representations 1 = (1, f), 2 = (0, $), 3 = (f, 0) and 4 = ti, l), the matrices p(3/2’, 
p“”’ and A are the following (Loide and Loide 1977): 

M K6iv and R K Loide 

1 (1 /2)  o at“:” g14 

I 0 0 0 

0 

9 (3  1) 
0 
0 
0 

The relation (32) is needed when operating with matrices p and A. 

coefficients a,  b, c, p1 and p2 (Loide 1974, Loide and Loide 1977). 
If we deal with the single mass equations we have four different choices of 

(33) 

(34) 

(35) 

(36) 

In case I the equation describes a single spin-; particle and is the Pauli-Fierz s = 9 
equation (which in turn is equivalent to the Rarita-Schwinger equation). p‘3/2’  satisfies 
the minimal equation (18) with a = 1, and p“”’ is nilpotent and satisfies (4) with a = 2. 

In cases I1 and I11 the equation describes one spin-; particle and one spin-4 particle. 
The minimal equation of p‘3/2’ is the same as in the Pauli-Fierz case; p“/* ’  satisfies 
the minimal equation (18) with a = 1. 

In case IV the equation describes one spin-? and two spin-$ particles. The minimal 
equations of p‘3/2’ and p“”’ are the same as in cases I1 and I11 but pa satisfies =I. 
In this case our equation is equivalent to the Dirac equation for a vector bispinor. 

Now we examine the definiteness of charge. In all four cases we get the same 
result for y 3 / 2  because p‘3/2’  satisfies the minimal equation (18) with a = 1 and we get 

1 
Case I: ab =-I 4 ,  C=--, P1 = p 2 .  

Case 11: ab = a ,  c = I ,  p 1 =  7 3 2 .  

Case 111: ab = -4, C =--, p1= P2.  

Case IV: ab =z,  

1 1 

3 3 

1 
P I  = -p2. c = - 7 ,  3 

Y 3 / 2   PI (37) 
(in calculating traces, the relation Tr rl:’ = 2s + 1 must be used). 
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In cases I1 and I11 the equation describes in addition to a spin-; particle also one 
1 spin-? particle. For ylIz  we get 

case I1 Y l / Z  = -2p1, (381 

case I11 ~ 1 1 2  = - + I .  (39) 
From (37)-(39) it is obvious that charge densities of spin-; and spin-; particles have 
opposite signs. 

In case IV (two spin-h particles) the trace condition (12) is not satisfied, and our 
previous definiteness conditions give the wrong result. From (30), (31) and (36) we 
get for Y I / Z  

y1/2 = 0. (40) 
As we see in § 7, charge densities of different spin-; particles have opposite signs. 
Therefore the result yE = 0 for some spin s may indicate the indefiniteness of states 
of the same mass and spin. 

Concerning the definiteness conditions (26), it is possible to verify that these 
conditions indeed work only in the single-particle case. 

7. E procedure 

Now we deal with case IV, when our equation describes in addition to a spin-2 particle 
two spin-; particles. To use the trace condition (12) we find the new equation which 
describes two spin-; particles with masses m and m i l  + E  and which in the limit E + 0 
reduces to the original equation. 

Since we are interested in the definiteness of spin-: particles we deal with the 
matrix p =p(1/2' only. In case IV p satisfies the minimal equation 

p ( p 2  - 1) = 0. (41) 

From (301, p"/2' contains three parameters a, b and c, but eigenvalues depend 
on two parameters ab and c. Having two parameters, it is possible to vary the 
eigenvalues of p"'2'. In (41), ab and c are given by (36). If we vary them infinitesimally 

(42) 
1 ab +:+St, c + - 5 + & ,  

the eigenvalues of are changed. 

satisfy the minimal equation 
A new pr matrix (cf § 5 )  must have the non-zero eigenvalues *1 and *(l + E ) ,  and 

PAP: -  1)[Pf-(l+E)21=0. (43) 

DetlP - A  1 = A s  - (2ab + c z  +;)A + [ab (ab - c )  -t c2/4]A = 0. 

The characteristic equation of p is from (30) and (32) 

(44) 

Demanding that PE satisfies (43), we get from (44) the following system to determine 
the new parameters ab, and cE : 

(45) 

Since we are interested in the limit E + 0 we retain only the terms linear in E in (45). 

2 a b , + c ~ + a = 2 + 2 ~ ,  ab, (ab, - c,) +cf /4  = 1 + 2 ~ .  



2360 M K6iv and R K Loide 

Substituting (42) into (45) we get 

2Sl-S2=2&* (46) 

From (46) the choice of S1 and Sz is not unique. This non-uniqueness is caused by 
the fact that at an infinitesimal level the system (45) is not sensitive with regard to 
(43). In other words, demanding the eigenvalues *(l + E ~ )  and *(l + e 2 )  the system 
(45) remains the same. It is possible to verify that such different choices do not affect 
the results of definiteness testing. 

In (46) we choose 

61 = E/2, 8 2  = --E ; 

then 

(47) 1 ab, = t + ~ / 2 ,  C, = - 2 - E .  

Evidently as E + 0, PF + P.  

charge. From (6) we get 
Let us write down the projection operators and determine the definiteness of 

Now we calculate Tr(AP:?) and Tr(APl{?+El).  Using (48) and (16) we obtain 

Tr(AP:{') = r ( 4 ~ ) - l  Tr{A[p? - ( 1  +2&)P,]}, 

Tr(APi{?+E,) = * ( 4 ~ ) - ' ( 1  + E )  Tr[A(P; - P E ) ] .  

From the expressions of PE and 12, (30) and (31), and coefficients (47) we get 

T r ( M E )  = 4 ~ ~ 1 ,  Tr(Ap2) = 1 2 . 5 ~ ~ .  

Therefore 

y : /2  = *Tr(AP:(') = -2pl(l - E ) ,  

y ? / 2  = *Tr(APi(?+El) = 2p1(1 + E ) .  

(49) 

If we remember that sgn y gives us the sign of the charge density, we obtain from 
(50) that charge densities of different spin-; particles are opposite (also in the limit 
E + O ) ,  Therefore the fact that in the degenerate case charge density is indefinite 
(Loide and Loide 1977) is now explained: the charge densities of different s = 5 states 
are opposite. 

in the limit E + 0 it is possible 
to verify by direct calculation that as E + 0 we get the new projection operators 

Examining the projection operators Pi': and 

1 /2  =PL1, lim P*t(l+Ei 1 / 2  = P:l, 
F'O E '0 

which do not coincide with the projection operator Pel= * i p ( P  * 1) of (41), but give 

P,1= Pi, +p:,. 

This is not surprising, since 4- =PI$ and ++ = P"4 give us solutions with definite 
charge density, but PtL gives the solution with indefinite charge density. 
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As we have seen, the prescription given in 9 5 enables us to investigate the 
definiteness in the degenerate case. Therefore it appears that the algebraic definiteness 
conditions, based on the trace condition (12), are in principle applicable in the case 
of an arbitrary first-order wave equation. 

8. Conclusions 

In this paper we have analysed the known definiteness conditions and re-examined 
the cases when they are applicable. We have used the formalism based on the spin 
projection operators, which we find more convenient in algebraic investigations of 
equations. 

As we have seen, the existing definiteness conditions work in the cases when there 
is no mass-spin degeneracy. For the degenerate case the E procedure is given. Its 
idea is the following: we derive a new equation which has no mass-spin degencracy, 
and can therefore be tested for definiteness by the known trace conditions, and which 
in the limit E + O  reduces to the equation we started with. The new equation and PE 
matrices may be useful in other calculations too because they allow us to separate 
different particles in the degenerate case. 

Due to the acausality of high spin single-particle equations (Velo and Zwanziger 
1969, Shamaly and Capri 1972) it becomes necessary to investigate different types 
of equations: single-particle and multi-particle equations. In the quantisation of 
multi-particle equations it is necessary to determine the definiteness of energy and 
charge. In definiteness testing the most useful technique is by using trace conditions, 
which as we have shown, may be regarded as the most universal definiteness conditions. 
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